

المجلة المصرية للاقتصاد الزراعي
ISSN: 2311-8547 (Online), 1110-6832 (print) https://meae.journals.ekb.eg/

## اقتصاديـات انتاج أهم النباتات الطبية والعطريـة في مصر

## أ.د/ محمد صلاح عبدالسلام قنديل** أ.د/ محمد سيد شحاتة محمد **

د/ محمود أحمد الرفاعى** * مـ أحمد يوسف عبدالفتاح يوسف
** قسم الاقتصاد الزراعي ـ كلية الزراعة - جامعة عين شمس * طالب ماجستير جامعة عين شمس

| بياتات البحث | المستخلص |
| :---: | :---: |
| فبول 2023/11/19 2023/12/30 | فى مصر يتوفر مناخ مناسب لزر اعة النباتات الطبية و العطرية، إلا أنها تزر ع بمساحات غير كافية من تلك النباتات التي تتثبر الذهب الأخضر الذي يمكن ان يحقق للبلاد مكاسب كبيرة. وتحتاج زر اعة تلك النباتات الىى رعاية وعناية خاصة تزيد من التكلفة الإنتاجية وتؤثر على <br>  |
| الكلمات المفتحية: <br> نباتّات طبية و عطرية- <br> إقتصاديات إنتاج <br> (الكفاءة الاقتصادية. | تقلبات في المساحة المنزر عة من تلكـ الزر ووع. واستهوف البحث در اسة القتصـاديات انتاج أهم زروع النباتات الطبية والعطرية، ومدى الاختلاف بين التكاليف والاير اد وصافي الايراد الفدانى والكفاءة الاقتصـادية لتلك الزرووع. اعتمد البحث على استخذم أسلوب التحليل الإحصائي الوصفي والاستدلالي لتحقيق أهداف البحث. تم اختيار زرووع الثيح البابونج و الكر اويةً و الكركدية والريحان والعتر والبردقوش واليانسون، وتمثّل ثلك الزردوع نحو 66.46\% من متو سط مساحة النباتات الطبية والعطر ية خلال الفترة2017-2021 والمقدرة <br> بنحو 99.577 ألف فدان. <br> تبين وجود زيادة معنوية في المساحة المزرو عة من النباتات الطبية و الطبية و العطر ية موضع الار اسة، فيما عدا نباتي الثّيح البابونج و البردقوش، وكانت اعلاها في الكراوية واو والكركدية بزيادة بلغت 572، 446 فدان على الترتيب. كما تبين وجود زيادةٌ معنوية في النكاليف الإنتاجية الفدانية للزرو ع موضع الار اسة، بلغت اعلاهـا للينسون بنحو 1135 جنية، البرد دقوش 1096 جنية. كذلك كانت الزيادة في صـافي العائد الفدانى لتلتك الززورع معنو ية، فيما عدا الثيح <br> البابونج و الكركديـة.. |

الباحث الدسئول: أحمد يوسف البريد الإلكتروني: ahmedyoussef203@agr.asu.edu.eg
© The Author(s) 2023.


Available Online at EKb Press
Egyptian Journal of Agricultural Economics ISSN: 2311-8547 (Online),
1110-6832 (print)
https://meae.journals.ekb.eg/

# The economics of the production of the most important medicinal and aromatic plants in Egypt 

Ahmed Youssef Abdelfattah Prof. Mohamed Salah Abdel Salam Qandil<br>Prof. Mohamed Sayed Shehata Mohamed Dr. Mahmoud Ahmed Al Rifai<br>Department of Agriculture Economics, Faculty of Agriculture Ain Shams University

## ARTICLE INFO <br> ABSTRACT

## Article History

Received:19-11-2023
Accepted:30-12-2023

## Keywords:

Medicinal and aromatic plants production economics economic efficiency. their cultivated area. these crops.

The cultivation of medicinal and aromatic plants requires special care that increases the production cost and affects the profitability of feddans, which leads to fluctuating trends among farmers regarding these crops and fluctuations in

The research aimed to study the economics of the production of the most important medicinal and aromatic plants, and the extent of the difference between costs, revenue, net revenue per feddan, and the economic efficiency of

Wormwood crops of chamomile, caraway, hibiscus, green basil, geranium, marjoram, and anise were selected.It was found that there was a significant increase in the cultivated area of medicinal and aromatic plants under study, except for wormwood, chamomile, and marjoram, and the highest was in caraway and hibiscus, with an increase of 572 and 446 feddans, respectively.
Using some efficiency measures to compare the study crops. It was found that the attar crop ranked first among the study crops in terms of the return of the Egyptian pound with an average of about EGP 8.4, followed by basil with an average of about EGP 5.1. It is followed by hibiscus with an average of about EGP 4.4, followed by marjoram with an average of about EGP 3.8, followed by star anise with an average of about EGP 2.6, followed by caraway with an average of about EGP 1.8, and chamomile wormwood ranks last with an average of about EGP 1.2.
As for the unit cost of the cultivation price, it was $89 \%, 48 \%, 48 \%, 48 \%, 28 \%$, $27 \%, 15 \%, 12 \%$, wormwood, chamomile, caraway, star anise, hibiscus, marjoram, basil, and attar, respectively.

[^0]
## Introduction

The group of medicinal and aromatic plants is one of the oldest plants known to history and used by man throughout the ages for various purposes; some were used as food and others were used as medicine or perfumes, and it appeared from ancient times their importance and their multiple uses in the pharmaceutical industries and daily uses such as spices, essential oils, ornamental purposes, and other uses.
Egypt is one of the countries with a suitable environment for the cultivation and production of these crops, as it is cultivated in many areas inside and outside the valley and the desert, and it is characterized by the availability of light and thermal range suitable for the cultivation of these plants, as well as the types of land that suit the production of medicinal and aromatic plants with different ground needs.
Despite the availability of the appropriate climate in Egypt for the cultivation of these plants, they are grown in insufficient areas to produce large quantities, which can bring the country great gains as they are multi-industries with direct and indirect uses, due to their need for attention from the fields of research and development and sufficient investment to expand their cultivation for development and modern accompaniment to various agricultural operations and transactions, starting from the stages of its integrated production, marketing, and export system.

## Study problem:

Despite the economic and industrial importance of medicinal and aromatic plants, the multiplicity of their types, their high economic return, and the availability of environmental and climatic conditions, they still constitute a small percentage in the crop area of Egyptian agriculture, ranging between $0.39 \%$ and $0.79 \%$ during the period 2003-2021.
It is noted that the cultivation of these plants needs special care that increases the production cost and affects the profitability of feddans, which leads to fluctuations in farmers' attitudes towards the cultivation as well as fluctuations in their cultivated area.

## Research Objective:

The research mainly aims to study the economics of the production of the most important medicinal and aromatic plants, and the following sub-objectives are addressed: study the productive and economic indicators of the most important of these crops; study the most important criteria for the economic efficiency of those crops; study the extent of the difference between costs, revenue, net revenue feddans, and their economic efficiency.

## Research method and data sources:

The research depends on the use of the method of descriptive and inferential statistical analysis to achieve the objectives of the research, through the use of some mathematical and statistical methods such as arithmetic averages, percentages, and analysis of general trend equations.

Analysis of variance and the least significant difference test are also used to study the difference between the costs and net acre return of the cultivation of medicinal and aromatic plants under study. The research depends on published and unpublished data issued by the Agricultural Economics Bulletin, the Central Administration for Agricultural Economics, the Ministry of Agriculture, and Land Reclamation, in addition to some references and previous studies that serve the nature of the research.

## First: The relative importance of the area of medicinal and aromatic plants from the total crop area in Egypt

The study of the indicators in Table (1) shows that the relative importance of the area of medicinal and aromatic plants in the total crop area during the study period ranged between a minimum of about $0.39 \%$ in 2013 and a maximum of about $0.79 \%$ in 2019, with an annual average of about $0.53 \%$ during the period 2003-2021.
By calculating the equation of the linear time trend, it is clear from Table (2) that the relative importance of the area of medicinal and aromatic plants in the total crop area increases annually during the study period 20032021 by about 0.013 feddans, and the statistical significance of this increase has been proven.
The coefficient of determination was 0.465 , which means that time reflects $47 \%$ of the variables affecting the relative importance of the area of medicinal and aromatic plants in the total crop area, and the statistical significance of the mathematical image used was proven.
Table (1) Evolution of crop area and area of medicinal and aromatic plants per feddan in Egypt as an average for the period 2003-20212021

| years | \% of total medicinal and aromatic plants of crop area |
| :---: | :---: |
| 2003 | 0.42 |
| 2004 | 0.49 |
| 2005 | 0.46 |
| 2006 | 0.42 |
| 2007 | 0.52 |
| 2008 | 0.46 |
| 2009 | 0.56 |
| 2010 | 0.55 |
| 2011 | 0.47 |
| 2012 | 0.45 |
| 2013 | 0.39 |
| 2014 | 0.45 |
| 2015 | 0.48 |
| 2016 | 0.51 |
| 2017 | 0.61 |
| 2018 | 0.66 |
| 2019 | 0.79 |
| 2020 | 0.62 |
| 2021 | 0.67 |
| Average | 0.53 |
| minimum | 0.39 |
| maximum | 0.79 |

Source: Collected and computed from data from the Ministry of Agriculture and Land Reclamation, the Central Administration for Agricultural Economics, Agricultural Economics Bulletin, miscellaneous

Table (2) Equations of the general time trend of crop area and area of medicinal and aromatic plants per feddan in Egypt 2003-2021

| Variable | F | R2 | Estimated equation |
| :---: | :---: | :---: | :---: |
| The relative importance of the area of <br> medicinal and aromatic plants of the <br> total crop area (feddans) | 14.759 | 0.465 | $\mathrm{Y}=0.399+0.013 \mathrm{Xi}$ <br> $(10.701)^{* *}(3.842)^{* *}$ |

(Y) where: Estimated value $\%$ of total medicinal and aromatic plants from crop area
$\mathrm{Xi}=$ Time variable where $(1,2,3, \ldots \ldots .21)$
value in parentheses indicates calculated (T).
(R2) Coefficient of determination
(F) indicates the significance of the regression coefficient
$(*)$ indicates the significance of the regression coefficient at the level of 0.05
$(* *)$ indicates the significance of the regression coefficient at the level of 0.01
Source: Collected and calculated from Table 1 data

## Second: The relative importance of the area of the most important medicinal and aromatic crops in Egypt

Medicinal and aromatic plants are divided into three main sections, namely medicinal plants, aromatic plants, and aromatic grains.

Medicinal plants: Table (3) shows that the average area of medicinal plants during the period 2017-2021 reached to about 55.26 thousand feddans, and they constitute the largest share of medicinal and aromatic plant groups, representing about $50 \%$ of them.
The crop of chamomile wormwood, caraway, and hibiscus comes at the forefront of medicinal plants in terms of cultivated area, as the cultivated area for each of them during the study period was about 14.51 thousand feddans, 13.337 thousand feddans, 8.3 thousand feddans, representing about $14.57 \%, 13.39 \%$, and $8.33 \%$, respectively, of the average area of the group of medicinal and aromatic plants and aromatic grains in Egypt during the study period.
Aromatic grains: As for the group of aromatic grains, which comes in second place from the group of medicinal and aromatic plants, the average total area of these plants was about 24.619 thousand feddans during the study period, representing about $24.721 \%$ of the total area of medicinal and aromatic plants. Marjoram and anise crops are the most important crops planted with aromatic grains, as the area reached about 5963 and 7,041 feddans, representing $7.07 \%$ and $5.99 \%$ of the average area of the group of medicinal and aromatic plants and aromatic grains in Egypt during the study period. Table (3)

Aromatic plants: Table (3) shows that the average area of aromatic plants during the period 2017-2021 reached to about 19.69 thousand feddans and constitutes the lowest share of the group of medicinal and aromatic plants, representing about $20 \%$ of them.
The green basil crop and geranium are at the forefront of aromatic plants in terms of cultivated area, as the cultivated area for each of them during the study period was about 11.984 and 5.651 feddans, representing about $5.675 \%$, and $12.03 \%$ of the average area of the group of medicinal and aromatic plants and aromatic grains in Egypt during the study period.
According to the above, the research will be concerned with the crops of chamomile wormwood, caraway, and hibiscus for medicinal plant group, green basil and geranium for the aromatic plant group, and marjoram and star anise for the aromatic grain group.

Table (3): The Relative Importance of the Cultivated Area in Feddan of the Most Important Medicinal and Aromatic |  | Plants and Aromatic Grains in Egypt during the Period 2017-2021 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Crop / years | 2017 | 2018 | 2019 | 2020 | 2021 | total |

| Crop / years | 2017 | 2018 | 2019 | 2020 | 2021 | total | Average | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chamomile wormwood | 15071 | 15920 | 16568 | 11812 | 13186 | 72557 | 14511.4 | 14.57 |
| Caraway | 14653 | 19254 | 12691 | 9275 | 10813 | 66686 | 13337.2 | 13.39 |
| Hibiscus | 13668 | 11118 | 12420 | 13556 | 1933 | 41499 | 8299.8 | 8.33 |
| Parsley | 1862 | 2325 | 1589 | 1593 | 13842 | 21211 | 2424.2 | 2.43 |
| Thyme | 869 | 763 | 1442 | 2130 | 2505 | 7709 | 1553.8 | 1.56 |
| Dry chili | 1510 | 1287 | 1167 | 676 | 737 | 5377 | 1075.4 | 1.080 |
| Green mint | 4435 | 4880 | 5558 | 10607 | 7384 | 32864 | 6572.8 | 0.66 |
| Green chili | 912 | 1264 | 1369 | 1553 | 1541 | 6639 | 1327.8 | 1.33 |
| Henna | 958 | 1884 | 1736 | 1939 | 1094 | 7611 | 1522.2 | 1.53 |
| Dill | 1107 | 628 | 1053 | 287 | 888 | 3963 | 792.6 | 0.80 |
| Green coriander | 10 | 12 | 132 | 276 | 295 | 725 | 145 | 0.15 |
| Sugar corn | 0 | 139 | 177 | 197 | 291 | 804 | 160.8 | 0.16 |
| Maghat | 164 | 82 | 71 | 44 | 36 | 397 | 79.4 | 0.080 |
| Peppermint (green) | 34 | 452 | 349 | 549 | 1348 | 2732 | 546.4 | 0.55 |
| Moonflower (Clandiola) | 1195 | 1087 | 1757 | 632 | 596 | 5267 | 1053.4 | 1.058 |
| Jojoba | 927 | 801 | 1113 | 990 | 795 | 4626 | 925.2 | 0.93 |
| Moringa | 110 | 71 | 296 | 297 | 289 | 1063 | 212.2 | 0.21 |
| Sage | 299 | 153 | 315 | 471 | 292 | 1530 | 306 | 0.31 |
| Bitter orange | 16 | 10 | 24 | 39 | 52 | 141 | 28.2 | 0.028 |
| Guava leaf | 22 | 10 | 10 | 10 | 10 | 62 | 12.4 | 0.012 |
| Cloves | 528 | 625 | 722 | 0 | 7 | 1882 | 376.4 | 0.38 |
| Total medicinal | 57855 | 62758 | 130836 | 179033 | 57994 | 449046 | 55262.6 | 49.548 |
| Basil | 8544 | 9762 | 13106 | 13910 | 14596 | 59918 | 11983.6 | 12.03 |
| Geranium | 5144 | 6133 | 4396 | 4586 | 7997 | 28256 | 5651.2 | 5.675 |
| Lemongrass | 1445 | 638 | 1073 | 1050 | 1239 | 5445 | 1089 | 1.093 |
| Jasmine | 631 | 638 | 751 | 749 | 755 | 3488 | 697.6 | 0.701 |
| Local roses | 98 | 409 | 298 | 268 | 299 | 1372 | 274.4 | 0.28 |
| Total aromatic | 15862 | 17580 | 19624 | 20563 | 24886 | 186015 | 19695.8 | 19.779 |
| Marjoram | 6534 | 8512 | 7546 | 7032 | 5583 | 35207 | 7041.4 | 7.071 |
| Star anise | 2816 | 3244 | 8494 | 6619 | 8644 | 29817 | 5963.4 | 5.99 |
| Fennel | 4355 | 4523 | 4080 | 3611 | 1935 | 18504 | 3700.8 | 3.72 |
| Cumin | 2587 | 3909 | 4094 | 3582 | 3663 | 17835 | 3567 | 3.58 |
| Dry coriander | 3967 | 4068 | 2793 | 2451 | 3259 | 16538 | 3307.6 | 3.32 |
| Nigella Sativa | 862 | 228 | 220 | 85 | 200 | 1595 | 1039 | 1.04 |
| Total grains | 21121 | 24484 | 33227 | 23353 | 23284 | 119556 | 24619.2 | 24.721 |
| Total plants | 94838 | 104822 | 183687 | 222949 | 106164 | 754617 | 99577.6 | 100.00 |

Ministry of Agriculture and Land Reclamation, Central Administration of Agricultural Economics, Agricultural Economy Bulletin, miscellaneous issues

# Third: The Trend of the cultivated area of the most important medicinal and aromatic plants in Egypt during the period 2003-2021 

## 1 -The trend of the area of chamomile wormwood crop:

Table (4) shows that the area of chamomile wormwood crop during the study period ranged from a minimum of about 1271 feddans in 2018 to a maximum of about 16567 feddans in 2019 with an annual average of about 9259 feddans during the period 2003-2021.

By calculating the equation of the time trend, it is clear from Table (5) that the area of the chamomile wormwood crop increases annually during the study period by about 107.235 thousand feddans, where the statistical significance of this increase was not proven, nor did the statistical significance of the mathematical image used, which means that the area does not change and fluctuate around the average during the study period.

## 2-The trend of the caraway crop area:

Table (4) shows that the area of the caraway crop during the study period ranged from a minimum of about 2202 feddans in 2006 to a maximum of about 19254 feddans in 2018, with an annual average of about 7050 feddans during the study period.

By calculating the equation of the linear time trend. It is clear from Table (5) that the area of the caraway crop is increasing annually during the study period, which amounted to about 571.989 thousand feddans, and the statistical significance of this increase has been proven.
The coefficient of determination was 0.515 , which means that time reflects $52 \%$ of the variables affecting the area of the caraway crop, and the statistical significance of the model was proven.

## 3-The trend of the hibiscus crop area:

Table (4) shows that the area of the hibiscus crop during the study period ranged from a minimum of about 3861 feddans in 2020 to a maximum of about 13910 feddans in 2018 with an annual average of about 7618 feddans during the study period.

By calculating the equation of the linear time trend, it is clear from Table (5) that the area of the hibiscus crop increases annually during the study period 2003-2021 by about 446.163 feddans, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.701 , which means that time reflects $70 \%$ of the variables affecting the area of the hibiscus crop, and the statistical significance of the mathematical image used was proven.

## 4-The trend of the basil crop area:

Table (4) shows that the area of the basil crop during the study period ranged from a minimum of about 554 feddans in 2016 to a maximum of about 14,746 feddans in 2004, with an annual average of about 7,563 feddans.

By calculating the equation of the linear time trend, it is clear from Table (5) that the area of the basil crop increases annually during the study period 2003-2021 by about 402.686 feddans, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.410 , which means that time reflects $41 \%$ of the variables affecting the area of the basil crop, and the statistical significance of the mathematical image used was proven.

## 5- The trend of the area of the geranium crop:

Table (4) shows that the area of the geranium crop during the study period ranged from a minimum of about 1549 feddans in 2009 to a maximum of about 9055 feddans in 2021, with an annual average of about 4492 feddans.

By calculating the equation of the linear time trend, it is clear from Table (5) that the area of the attar crop increases annually during the study period by about 195.018 feddans, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.409 , which means that time reflects $41 \%$ of the variables affecting the area of the attar crop, and the statistical significance of the mathematical image used was proved.

## 6- The trend of the area of the marjoram crop:

Table (4) shows that the area of the marjoram crop during the study period ranged between a minimum of about 4219 feddans in 2014, and a maximum of about 16182 feddans in 2014 with an annual average of about 71450.21 feddans.

By calculating the equation of the linear time trend, it is clear from Table (5) that the area of the marjoram crop decreases annually during the study period by about -66.844 feddans, and the statistical significance of this decrease has not been proven.

The statistical significance of the mathematical image used was not proven, which means that the area did not change and fluctuate around the average during the study period.

## 7-The trend of the area of the star aniseed crop:

Table (4) shows that the area of the star anise crop during the study period ranged from a minimum of about 1011 feddans in 2012 to a maximum of about 8544 feddans in 2021, with an annual average of about 3226 feddans.

By calculating the equation of the linear time trend, it is clear from Table (5) that the area of the star anise crop increases annually during the study period by about 247.135 feddans, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.339 , which means that time reflects $34 \%$ of the variables affecting the area of star anise, and the statistical significance of the model as a whole was proven.

Table (4) Evolution of the total area (feddans) of medicinal and aromatic crops during the period 2003-2021

| Years | Star anise | Marjoram | Geranium | Basil | Hibiscus | Caraway | Chamomile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2003 | 1613 | 3806 | 3328 | 3891 | 3861 | 3732 | 7621 |
| 2004 | 2159 | 9167 | 5548 | 6290 | 6290 | 4546 | 9813 |
| 2005 | 2216 | 5292 | 3314 | 5434 | 4725 | 3564 | 7935 |
| 2006 | 1864 | 6413 | 2600 | 5413 | 5304 | 2202 | 6042 |
| 2007 | 2786 | 6574 | 3855 | 7929 | 6016 | 4367 | 7321 |
| 2008 | 1619 | 9309 | 3194 | 4778 | 4778 | 4468 | 9304 |
| 2009 | 1941 | 16182 | 1549 | 8033 | 7983 | 7371 | 11502 |
| 2010 | 6151 | 6693 | 2919 | 6383 | 6353 | 5138 | 10184 |
| 2011 | 3566 | 6519 | 4904 | 6906 | 6731 | 4063 | 10038 |
| 2012 | 1011 | 11771 | 5319 | 6536 | 6536 | 6384 | 11549 |
| 2013 | 1091 | 4871 | 2583 | 5700 | 5700 | 3705 | 8763 |
| 2014 | 1583 | 4219 | 5006 | 7986 | 7986 | 3514 | 11099 |
| 2015 | 1570 | 6352 | 4880 | 6809 | 6576 | 6379 | 9136 |
| 2016 | 2408 | 6084 | 5795 | 554 | 6871 | 7824 | 12661 |
| 2017 | 2816 | 6534 | 5144 | 8764 | 8544 | 14653 | 2653 |
| 2018 | 3244 | 5812 | 6133 | 9982 | 9762 | 19254 | 1271 |
| 2019 | 8494 | 7546 | 4406 | 13371 | 12975 | 12691 | 16567 |
| 2020 | 6619 | 7032 | 5808 | 14197 | 13910 | 9275 | 9275 |
| 2021 | 8544 | 5583 | 9055 | 14746 | 13842 | 10813 | 13186 |
| Average | 3226 | 7145 | 4492 | 7563 | 7618 | 7050 | 9259 |
| minimum | 1011 | 3806 | 1549 | 554 | 3861 | 2202 | 1271 |
| maximum | 8544 | 16182 | 9055 | 14746 | 13910 | 19254 | 16567 |

Source: Ministry of Agriculture and Land Reclamation, Central Administration of Agricultural Economics, Agricultural Economics Bulletin, miscellaneous issues.

Table (5) Equations of the general time trend of the development of the area of medicinal and aromatic plants (Feddan) during the period from 2003-2021
\(\left.\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Crop } & \mathrm{F} & \mathrm{R} 2 & \text { Time trend equation } \\
\hline \text { chamomile wormwood } & 0.517 & 0.030 & \begin{array}{c}\mathrm{Y}=8186.596+107.235 \mathrm{Xi} \\
(4.814)^{* *}(0.719)\end{array} \\
\hline \text { caraway } & 18.028 & 0.515 & \begin{array}{c}\mathrm{Y}=1329.737+571.989 \mathrm{Xi} \\
(0.866)(4.246)^{* *}\end{array} \\
\hline \text { Hibiscus } & 39.855 & 0.701 & \begin{array}{c}\mathrm{Y}=3156.421+446.163 \mathrm{Xi} \\
(3.917)(6.313)^{* *}\end{array} \\
\hline \text { Basil } & 11.832 & 0.410 & \mathrm{Y}=3536.404+402.686 \mathrm{Xi} \\
(2.649)^{* *}(3.440)^{* *}\end{array}
$$\right] \begin{array}{c}\mathrm{Y}=2541.404+195.018 \mathrm{Xi} <br>

(3.923)^{* *}(3.433)^{* *}\end{array}\right]\)| $\mathrm{Y}=7813.649+-66.844-\mathrm{Xi}$ |
| :---: |
| $(5.591)^{* *}(-0.545-)$ |

Where $(\mathrm{Y})=$ Estimated value of medicinal and aromatic plant area.
$\mathrm{Xi}=$ Time variable where $(1,2,3, \ldots \ldots . .21)$
value in parentheses indicates calculated (T).
(R2) Coefficient of determination
(F) indicates the significance of the regression coefficient
$\left({ }^{*}\right)$ indicates the significance of the regression coefficient at the level of 0.05
$(* *)$ indicates the significance of the regression coefficient at the level of 0.01
Source: Compiled and calculated from Table 4 data

## Fourth: Production costs of the most important medicinal and aromatic plants in Egypt during the period 2010-2020

By studying the evolution of the feddan production costs of the study crops of medicinal and aromatic plants during the period 2010-2020, the structure of productive costs was considered one of the important axes in making the farm decision on the distribution of limited agricultural resources to various agricultural activities, in addition to being one of the main elements in estimating the net return per feddan.

## 1-The trend of feddan production costs for chamomile wormwood:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 3502 in 2010 to a maximum of about EGP 12267 in 2020, with an annual average of about EGP 6749.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddan costs increases annually during the study period by about EGP 881.018, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.922 . This means that time reflects $92 \%$ of the variables affecting the amount of the feddan costs, and the statistical significance of the mathematical image used has been proven.

## 2-The trend of the feddan production costs of the caraway plant:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 2709 in 2010 to a maximum of about EGP 11898 in 2020, with an annual average of about EGP 6284.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddans costs increases annually during the study period by about EGP 972.418.

The coefficient of determination was 0.875 . This means that time reflects $88 \%$ of the variables affecting the amount of the feddan costs, and the statistical significance of the mathematical picture used has been proven.

## 3-The trend of the feddan production costs of the hibiscus plant:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 2321 in 2010 to a maximum of about EGP 8692 in 2020, with an annual average of about EGP 4542.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddan costs increases annually during the study by about EGP 651.855.

The coefficient of determination was 0.883 . This means that time reflects $88 \%$ of the variables affecting the size of the feddan costs, and the statistical significance of the mathematical image used has been proven.

## 4- The trend of the feddan production costs of the green basil plant:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 2531 in 2011 to a maximum of about EGP 11038 in 2020, with an annual average of about EGP 5753.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddans costs increases annually during the study period by about EGP 862.900, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.909 , which means that time reflects $91 \%$ of the variables affecting the amount of feddan costs, and the statistical significance of the mathematical image used was proven.

## 5-The trend of the feddan production costs of the geranium plant:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 3973 in 2010 to a maximum of about EGP 12057 in 2020, with an annual average of about EGP 6566.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddans costs increases annually during the study period by about EGP 800, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.665 , which means that time reflects $67 \%$ of the variables affecting the size of feddan costs, and the significance of the model as a whole was proven.

## 6-The trend of feddan production costs for marioram plant:

Table (6) shows that the amount of the feddans costs during the study period ranged from a minimum of about EGP 3259 in 2011 to a maximum of about EGP 13260 in 2020, with an annual average of about EGP 7582.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddans costs increases annually during the study period by about EGP 1096.164, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.891 , which means that time reflects $89 \%$ of the variables affecting the size of the costs per feddan, and the significance of the model as a whole was proven.

## 7- The trend of feddan production costs for star anise:

Table (6) shows that the amount of the feddan costs during the study period ranged from a minimum of about EGP 2945 in 2010 to a maximum of about EGP 12269 in 2020, with an annual average of about EGP 6964.

By calculating the equation of the linear time trend, it is clear from Table (7) that the amount of the feddans costs increases annually during the study period by about EGP 1134, and the statistical significance of this increase has been proven.

The coefficient of determination was 0.906 , which means that time reflects $91 \%$ of the variables affecting the size of feddan costs, and the significance of the model as a whole was proven.

Table (6) Feddan Production Costs (in EGP) of Study Crops of Medicinal and Aromatic Plants and Aromatic Grains during the Period 2010-2020

| plants <br> * years | Star anise | Geranium | Geranium | Basil | Hibiscus | Caraway | chamomile wormwood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 2945 | 3594 | 3973 | 2966 | 2321 | 2709 | 3502 |
| 2011 | 3004 | 3259 | 4256 | 2531 | 2531 | 2950 | 3857 |
| 2012 | 3116 | 3432 | 4402 | 3441 | 2810 | 2984 | 4046 |
| 2013 | 3360 | 6608 | 4548 | 3473 | 2735 | 3371 | 4130 |
| 2014 | 3668 | 3801 | 5082 | 3896 | 2948 | 3804 | 4137 |
| 2015 | 5909 | 6298 | 6769 | 4187 | 3007 | 5787 | 6467 |
| 2016 | 9234 | 8813 | 4276 | 5923 | 5017 | 8001 | 7776 |
| 2017 | 9988 | 10702 | 4482 | 7497 | 5625 | 9636 | 8635 |
| 2018 | 11702 | 12156 | 10759 | 8373 | 6542 | 6886 | 9664 |
| 2019 | 11407 | 11478 | 11618 | 9953 | 7732 | 11097 | 9753 |
| 2020 | 12269 | 13260 | 12057 | 11038 | 8692 | 11898 | 12267 |
| Average | 6964 | 7582 | 6566 | 5753 | 4542 | 6284 | 6749 |
| minimum | 2945 | 3259 | 3973 | 2531 | 2321 | 2709 | 3502 |
| maximum | 12269 | 13260 | 12057 | 11038 | 8692 | 11898 | 12267 |

*No data available prior to this period
Source: Collected and calculated from data from the Ministry of Agriculture and Land Reclamation, the Central Administration for Agricultural Economics, the Agricultural Economy Bulletin, miscellaneous.

Table (7) Equations of the general time trend of the feddan production costs (in Egp) of study crops of medicinal and aromatic plants during the period 2010-2020

| plants | F | R2 | Time trend equation |
| :---: | :---: | :---: | :---: |
| chamomile wormwood | 107.111 | 0.922 | $\begin{gathered} \hline \mathrm{Y}=1462.018+881.018 \mathrm{Xi} \\ (2.533) *(10.349) * * \end{gathered}$ |
| caraway | 62.905 | 0.875 | $\begin{gathered} \mathrm{Y}=449.400+972.418 \mathrm{Xi} \\ (0.540)(7.931)^{* *} \\ \hline \end{gathered}$ |
| Hibiscus | 67.897 | 0.883 | $\begin{aligned} \mathrm{Y}= & 630.692+651.855 \mathrm{Xi} \\ & (1.175)(8.240)^{* *} \end{aligned}$ |
| Basil | 89.966 | 0.909 | $\begin{gathered} \mathrm{Y}=575.145+862.900 \mathrm{Xi} \\ (0.932)(9.485) * * \end{gathered}$ |
| Geranium | 17.849 | 0.665 | $\begin{aligned} \mathrm{Y}= & 1765.582+800.009 \mathrm{Xi} \\ & (1.375)(4.225) * * \end{aligned}$ |
| Marjoram | 73.772 | 0.891 | $\begin{gathered} \mathrm{Y}=1004.927+1096.164 \mathrm{Xi} \\ (1.161)(8.589)^{* *} \end{gathered}$ |
| Star anise | 87.195 | 0.906 | $\begin{gathered} \mathrm{Y}=155.891+1134.655 \mathrm{Xi} \\ (0.189)(9.338)^{* *} \end{gathered}$ |

Where $(\mathrm{Y})=$ Estimated value of the evolution of the feddan production costs of study crops of medicinal and aromatic plants
$\mathrm{Xi}=$ Time variable where (2010, 2011, 2012....... 2020)
value in parentheses indicates calculated (T).
(R2) Coefficient of determination
$\left({ }^{* *}\right)$ indicates the significance of the regression coefficient at the level of 0.01
$\left.{ }^{*}\right)$ indicates the significance of the regression coefficient at the level of 0.05
Source: Collected and calculated from Table 6 data

# Fifth: Net feddan return for the most important medicinal and aromatic plants in Egypt during the period 2003-2021 

## 1- Net feddan yield of chamomile wormwood:

Table (10) indicates that the net yield of wormwood during the study period ranged from a minimum of about EGP 887 per feddan in 2018 to a maximum of about EGP 6913 in 2019, with an annual average of about EGP 1074.

By calculating the equation of the linear time trend, it is clear from Table (11) that the net return increases annually during the study period by about EGP 398 per feddan, and the statistical significance of this increase was not proven, nor did the significance of the model prove. This means that the net feddan yield of wormwood fluctuates around the average.

## 2- Net feddan yield of caraway:

Table (10) indicates that the net yield of the caraway plant during the study period ranged from a minimum of aboutEGP - 7626 in 2020 to a maximum of about EGP 19284 in 2018, with an annual average of about EGP 5089.

By calculating the equation of the linear time trend, it is clear from Table (11) that the net return increases annually during the study period by about EGP 1279.755, as the statistical significance of this increase was not proven.
The coefficient of determination was 0.263 , and the statistical significance of any of the mathematical images used was not proven.

## 3- Net feddan yield of hibiscus:

Table (10) indicates that the net yield of the hibiscus plant during the study period ranged from a minimum of about EGP 2531 in 2015 to a maximum of about EGP 22606 in 2015, with an annual average of about EGP 11232.

By calculating the linear time trend equation, it is clear from Table (11) that the net return decreases annually during the study period by about EGP -567, as the statistical significance of this decrease has not been proven and the significance of the model as a whole has not been proven.

## 4- Net feddan yield of green basil:

Table (10) indicates that the net yield of the basil plant during the study period ranged from a minimum of about EGP 2482 in 2020 to a maximum of about EGP 32756 in 2015, with an annual average of about EGP 14911.

By calculating the linear time trend equation, it is clear from Table (11) that the net return decreases annually during the study period by about EGP 23354, and the statistical significance of this decrease has been proven. The determination coefficient is 0.570 , which means that time reflects $57 \%$ of the variables affecting the net return, and the statistical significance of the mathematical image used has been proven.

## 5-Net feddan yield of geranium:

Table (10) indicates that the net yield of the plant during the study period ranged from a minimum of about EGP 33759 in 2010 to a maximum of about EGP 78401 in 2017, with an annual average of about EGP 48148.

By calculating the equation of the linear time trend, it is clear from Table (11) that the net return increases annually during the study period by about EGP 3194.145, and the statistical significance of this increase has been proven.
The coefficient of determination was 0.441 , which means that time reflects $44 \%$ of the variables affecting the net return, and the statistical significance of the mathematical image used was proven.

## 6-Net fiddan yield of marioram:

Table (10) indicates that the net yield of the marjoram plants during the study period ranged from a minimum of about EGP 4851 in 2015 to a maximum of about EGP 53877 in 2018 with an annual average of about EGP 23392.

By calculating the equation of the linear time trend, it is clear from Table (11) that the net return increases annually during the study period by about EGP 4281.982, and the statistical significance of this increase has been proven.
The coefficient of determination was 0.574 , which means that time reflects $57 \%$ of the variables affecting the net return and the significance of the model as a whole was proven.

## 7- Net yield feddan of star anise:

Table (10) indicates that the net yield of the star anise plant during the study period ranged between a minimum of about EGP -1762 in 2019 and a maximum of about EGP 14219 in 2020, with an annual average of about EGP 7833.
By calculating the equation of the linear time trend, it is clear from Table (11) that the net return increases annually during the study period by about EGP 5572, as the statistical significance of this increase has not been proven nor the significance of the model as a whole.

Table (10) Evolution of the net return in EGP for medicinal and aromatic crops and aromatic grains during the period 2010-2020

| * years | Star <br> anise | Marjoram | Geranium | Basil | Hibiscus | caraway | chamomile <br> wormwood |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2010 | 6700 | 7650 | 33759 | 22948 | 11546 | 1562 | 1105 |
| 2011 | 6938 | 15265 | 35733 | 17801 | 12865 | 2034 | 1105 |
| 2012 | 6133 | 7018 | 37206 | 22948 | 11546 | 2926 | 705 |
| 2013 | 5034 | 5805 | 35640 | 21069 | 17428 | 1692 | 566 |
| 2014 | 6903 | 6191 | 34311 | 22577 | 2531 | 1691 | 658 |
| 2015 | 7127 | 4851 | 43906 | 32756 | 22606 | -463 | -704 |
| 2016 | 11036 | 43472 | 57780 | 7955 | 19325 | -2292 | 1479 |
| 2017 | 12639 | 42472 | 78401 | 5822 | 4160 | 17988 | 720 |
| 2018 | 11200 | 53877 | 74281 | 5358 | 3894 | 19284 | -887 |
| 2019 | -1762 | 34409 | 50198 | 2775 | 8708 | 19186 | 6913 |
| 2020 | 14219 | 36300 | 48415 | 2482 | 8939 | -7627 | 153 |
| Average | 7833 | 23392 | 48148 | 14954 | 11232 | 5089 | 1074 |
| minimum | -1762 | 4851 | 33759 | 2482 | 2531 | -7627 | -887 |
| maximum | 14219 | 53877 | 78401 | 32756 | 22606 | 19284 | 6913 |

*No data available prior to this period
Source: Collected and calculated from data from the Ministry of Agriculture and Land Reclamation, the Central Administration for Agricultural Economics, the Agricultural Economy Bulletin, miscellaneous.

Table (11) Equations of the general time trend of the development of the net return of medicinal and aromatic crops and aromatic grains during the period from 2010-2020
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { plants } & \mathrm{F} & \mathrm{R} 2 & \text { Time trend equation } \\
\hline \text { chamomile wormwood } & 2.066 & 0.187 & \begin{array}{c}\mathrm{Y}=\begin{array}{l}150.345+398.336 \mathrm{Xi} \\
(0.080)(1.438)\end{array} \\
\hline \text { caraway } \\
\end{array}
$$ 3^{3.218} <br>
\hline Hibiscus \& 0.263 \& \mathrm{Y}=-1645.527-+1279.755 \mathrm{Xi} <br>

(-0.340)(1.794)\end{array}\right]\)\begin{tabular}{c}

$\mathrm{Y}=$| $14633.145+-566.918 \mathrm{Xi}$ |
| :--- |
| $(3.429)^{* *}(-0.901-)$ | <br>

\hline Basil <br>
\hline Geranium <br>
\hline Marjoram <br>
\end{tabular}

Where $(\mathrm{Y})=$ Estimated value of the net yield of medicinal and aromatic plants and aromatic grains.
$\mathrm{Xi}=$ Time variable where (2010, 2011, 2012....... 2020)
value in parentheses indicates calculated (T).
(R2) Coefficient of determination
$(* *)$ indicates the significance of the regression coefficient at the level of 0.01
$\left(^{*}\right)$ indicates the significance of the regression coefficient at the level of 0.05
Source: Collected and calculated from Table 8 data

## Sixth: Trends in time and qualitative changes for the most important types of medicinal and aromatic plants

First: Trends in time and qualitative changes in the feddan production costs of cultivation of medicinal and aromatic plants
The results of the variance analysis indicate the average production costs of planting medicinal and aromatic plants during the period 2017-2020 Table No. (12) The statistical significance of the differences in production costs in relation to time, as well as the cost of production for the cultivation of medicinal and aromatic plants under study, which means that there are differences between the production costs of planting medicinal and aromatic plants among themselves as well as during the years of study.

| Table (12): Analysis of variance for average feddan production costs of medicinal and <br> aromatic plants during the period 2017-2020 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |  |
| Corrected Model | 104559323.7 a | 9 | 11617702.6 | F | .000 |  |
| Intercept | 2743606841.3 | 1 | 2743606841.2 | 6.798 | .000 |  |
| Between year | 47840695.0 | 3 | 15946898.3 | 1605.4 | .001 |  |
| Between plants | 56718628.7 | 6 | 9453104.8 | 9.3 | .002 |  |
| Error | 30762187.0 | 18 | 1709010.4 |  |  |  |
| Total | 2878928352.0 | 28 |  |  |  |  |
| Corrected Total | 135321510.7 | 27 |  |  |  |  |
| a. R Squared $=.773$ (Adjusted R Squared $=.659$ ) |  |  |  |  |  |  |
| Calculated from the data in Table (6) |  |  |  |  |  |  |

From Table (13) of the average production costs according to time, it is clear that there are significant differences between 2020, as well as 2018 and 2017, and the years 2019 and 2017 differ, while there is no difference between the rest of the years of study, which means that there is an increase in production costs

Table (13): Results of applying the variance analysis between average costs and average years during the period 2017-2020

| years | 2017 | 2018 | 2019 |
| :---: | :---: | :---: | :---: |
| 2018 | 1359.6 |  |  |
| 2019 | $2353.3^{*}$ | 993.7 |  |
| 2020 | $3559.4^{*}$ | $2199.9^{*}$ | 1206.1 |

Using the L.S.D test and Table (14) to determine the significance of the differences between the feddan production costs of the study crops, it is clear that there are significant differences between the study crops between hibiscus, caraway, wormwood and basil, and a difference between caraway, wormwood, basil, marjoram and star anise is what means that there are differences between the production costs of the crops under study during the study period, which reflects the fluctuation of the cultivated areas of those crops according to the material capabilities and marketing capabilities of farmers.

Table (14): Results of applying the L.S.D test between the differences between different averages. Average production costs for the years during the period 2017-2020

| plants | chamomile | caraway | Hibiscus | Basil | Geranium | Marjoram |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| caraway | 200.5 |  |  |  |  |  |
| Hibiscus | $2932.0^{*}$ | $2731.5^{*}$ |  |  |  |  |
| Basil | 864.5 | 664.0 | $2067.5^{*}$ |  |  |  |
| Geranium | 350.8 | 150.3 | $2581.3^{*}$ | 513.8 |  |  |
| Marjoram | 1819.3 | $2019.8^{*}$ | $4751.3^{*}$ | $2683.8^{*}$ | $2170.0^{*}$ |  |
| Star anise | 1261.8 | 1462.3 | $4193.8^{*}$ | $2126.3^{*}$ | 1612.5 | 557.5 |

From the above, it is clear that there are significant differences during the study years for the feddan costs of the study crops of medicinal and aromatic plants as a result of the continuous rise in production costs, as the study period is after 2016, in which the exchange rate was liberalized, which led to this increase in costs.

## Second: trends in time and qualitative changes in the net feddan yield of medicinal and aromatic plant cultivation.

Based on the results of the analysis of the variance of the net feddan return for medicinal and aromatic plant crops during the period 2017-2020 Table No. (15), the statistical significance of the differences in the net feddan return for time was not proven, while the statistical significance was proven between the net feddan return of the crops of the study sample, which means that there are differences between the net feddan return of medicinal and aromatic plant crops among themselves, and there are no differences between the net return during the study years.

Table (15): Analysis of variance for the average net feddan yield of medicinal and aromatic plants during the period 2017-2020

| Source | Type III Sum of <br> Squares | df | Mean Square | F | Sig. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Corrected Model | $12102916784.244^{\mathrm{a}}$ | 9 | 1344768531.583 | 24.360 | $\mathbf{. 0 0 0}$ |
| Intercept | 10968635197.957 | 1 | 10968635197.957 | 198.693 | $\mathbf{. 0 0 0}$ |
| Between year | 209775053.787 | 3 | 69925017.929 | 1.267 | $\mathbf{. 3 2 1}$ |
| Between plants | 11792095980.799 | 6 | 1965349330.133 | 35.602 | $\mathbf{. 0 0 0}$ |
| Error | 828058840.796 | 15 | 55203922.720 |  |  |
| Total | 25600414059.000 | 25 |  |  |  |
| Corrected Total | 12930975625.040 | 24 |  |  |  |

a. R Squared $=.936$ (Adjusted R Squared $=.898$ )

Calculated from the data in Table (10)

From Table (16) and using the L.S.D test to determine the significance of the differences between the net feddan yield between the study crops, it is clear that there are significant differences between the study crops between marjoram, wormwood, caraway, basil, star anise, and hibiscus and between wormwood, star anise, marjoram, caraway, and perfume, and between caraway and tar, which means that there are differences between the net yield of the crops under study during the study period, which reflects the fluctuation of the cultivated areas of those crops according to the farmers' attitudes towards their cultivation.

Table (16): Results of the application of the L.S.D test to test the significance of the differences
between the average productivity of the net return for the years during the period ( 2017-2020)

| plants | chamomile | caraway | Hibiscus | Basil | Geranium | Marjoram |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| caraway | $16224.000^{*}$ |  |  |  |  |  |
| Hibiscus | 3829.9167 | $12394.083^{*}$ |  |  |  |  |
| Basil | 1513.9167 | 14710.0833 | 2316.0 |  |  |  |
| Geranium | $60228.417^{*}$ | $44004.417^{*}$ | $56398.5^{*}$ | $58714.50^{*}$ |  |  |
| Marjoram | $39169.167^{*}$ | $22945.167^{*}$ | $35339.3^{*}$ | $37655.25^{*}$ | $21059.25^{*}$ |  |
| Star anise | 10090.66 | 6133.33 | 6260.75 | 8576.7500 | $50137.75^{*}$ | $29078.00^{*}$ |

As for the differences between the feddan production costs and the net feddan return of the crops under study, the statistical significance of the differences between these crops has been proven, which reflects the differences in the needs of those crops from production requirements and care during their cultivation and harvesting.

## Seventh: Economic efficiency of the most important crops of medicinal and aromatic plants

## 1- Feddan production costs:

The results of the analysis of variance of feddan production costs between the crops of the study showed statistically significant differences, and the results of Table (17) indicate that the marjoram crop ranked first among the study crops in terms of production costs with an average of about EGP 7582, followed by star anise with an average of about EGP 6964, followed by chamomile with an average of about EGP 6749, followed by Al-Ater with an average of about EGP 6566, followed by caraway with an average of about EGP 6284, followed by basil with an average of about EGP 6284, followed by basil with an average of about EGP 6964. 5753, and the hibiscus crop comes in last place with an average of about EGP 4542.

## 2- Net feddan yield:

It is clear from Table (17) that the ater crop has ranked first among the study crops in terms of net feddan yield with an average of about EGP 48148 during the study period, followed by marjoram with an average of about EGP 23392, followed by basil with an average of about EGP 14911, followed by hibiscus with an average of about EGP 11232, followed by star anise with an average of about EGP 7833, followed by caraway with an average of about EGP 5089, and comes in last place chamomile with an average of about EGP 1074.

## 3- Egyptian pound yield:

By estimating the yield of the Egyptian pound for the study crops, it was found that the geranium crop ranked first among the study crops in terms of the yield of the Egyptian pound with an average of about EGP 8.4, followed by basil with an average of about EGP 5.1, followed by hibiscus with an average of about EGP 4.4, followed by marjoram with an average of about EGP 3.8, followed by star anise with an average of about EGP 2.6, followed by caraway with an average of about EGP 1.8, and chamomile wormwood comes in last place with an average of about EGP 1.2.

## 4- Farm price:

By estimating the agricultural price of the study crops, it was found that the star anise crop ranked first among the study crops in terms of the yield of the Egyptian pound with an average of about EGP 18573 per ton, followed by hibiscus with an average of about EGP 16229 per ton, followed by caraway with an average of about EGP 14370 per ton, followed by chamomile with an average of about EGP 7879 per ton, followed by marjoram with an average of about EGP 6468 per ton, followed by Al-Ater with an average of about EGP 984 per ton, and basil comes in last place With an average of about EGP 984 per ton.

## 5-The cost of the unit produced:

By studying and reviewing the cost of the unit producing the crops of the study, it was found that the star anise crop is the highest with an average of about EGP 8246 per ton, followed by chamomile with an average of about EGP 7050 per ton, then the caraway crop with an average of about EGP 6851 per ton, followed by hibiscus with an average of about EGP 4517 per ton, followed by marjoram with an average of about EGP 1767 per ton, followed by Al-Attar with an average of about EGP 120 per ton, and the basil crop was the lowest with an average of about EGP 99 per ton.

## 6- Unit cost of farm price:

By studying and reviewing the unit cost of the farm price of the study crops, it was found that the crop of chamomile wormwood is the highest, reaching about $89 \%$, followed by caraway, which reached about $48 \%$, followed by star anise, which reached about $44 \%$, followed by hibiscus by about $28 \%$, followed by marjoram by about $27 \%$, followed by basil by about $15 \%$, and the yield of geranium was the least, reaching about $12 \%$.

Table (17): The most important criteria for the economic efficiency of the most important crops of medicinal and aromatic plants during the period 2010-2020

| The crop | Star anise | Geometric | Geranium | Basil | Hibiscus | caraway | chamomile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Production costs <br> (EGP) | 6964 | 7582 | 6566 | 5753 | 4542 | 6284 | 6749 |
| Net return per acre <br> (EGP) | 7833 | 23392 | 48148 | 14911 | 11232 | 5089 | 1074 |
| Pound yield | 2.4 | 3.8 | 8.4 | 5.1 | 4.4 | 1.8 | 1.2 |
| Price from the farm <br> (EGP/ton) | 18573 | 6468 | 984 | 648 | 16229 | 14370 | 7879 |
| The cost of the unit <br> produced in pounds | 8246 | 1767 | 120 | 99 | 4517 | 6851 | 7050 |
| Unit cost of farm price <br> (\%) | 44 | 27 | 12 | 15 | 28 | 48 | 89 |

Calculated from the data in Table (10) (8) (6)

## Recommendations:

1- Expanding the cultivation of medicinal and aromatic plants with a high yield as an alternative to less yielding crops.
2- Study foreign markets to identify their quantitative and qualitative needs of these plants.
3- Study the behavior of the local consumer to identify their quantitative and qualitative needs of these plants.
4- Intensify research in the field of cultivation of medicinal and aromatic plants and land reclamation in the Western Sahara, as most medicinal and aromatic species are found in such lands.

## References:

1- Ministry of Agriculture, General Administration of Agricultural Culture, Technical Bulletin World of Agricultural Thought Bulletin (2021), Volume (17), Third Issue, October 2021, pages 3:60.
2- Ministry of Agriculture, General Directorate of Agricultural Culture, Technical Bulletin Bulletin of the cultivation of medicinal and aromatic floral, fruitful and root plants in the new lands (2013), bulletin No.
(17) Non-periodical, October 2021, pages 16:40.

3- Ministry of Agriculture, General Directorate of Agricultural Culture, Technical Bulletin Bulletin of the Cultivation and Production of Spice and Spices Plants (2022), Non-Periodic Bulletin No. (7), pp. 46:67.

4- Ministry of Agriculture, General Directorate of Agricultural Culture, Technical Bulletin Bulletin for the Cultivation and Production of Aromatic Grains and the Safe Control of Medicinal Plant Pests in New Lands (2009), Bulletin No. (8), non-periodical, pages 30:47.

5- Mohamed Kamel Ibrahim Rihan, 2021. Quantitative Methods in Economic Sciences (Practical Applications), Arab Knowledge Bureau, Cairo, Egypt, pp. 246-251.

6- Samir Kamel Ashour, Samia Aboul Fotouh Salem (2010), Introduction to Analytical Statistics


[^0]:    Corresponding Author: Ahmed Youssef
    Email: ahmedyoussef203@agr.asu.edu.eg
    © The Author(s) 2023.

